Randomness in \mathbb{C}^{2} and Pluripotential Theory

Outline

(1) Zeros of univariate random polynomials $p: \mathbb{C} \rightarrow \mathbb{C}$ and potential theory; recent results of Bloom-Dauvergne
(2) Random polynomials $p: \mathbb{C}^{2} \rightarrow \mathbb{C}$ and random polynomial mappings $\mathbf{F}=(p, q): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ and pluripotential theory; recent results of Bayraktar
(3) Generalizations/modifications and open questions

Kac-Hammersley polynomials

Consider random polynomials $p_{n}(z)=\sum_{j=0}^{n} a_{j} z^{j}$ where the coefficients a_{0}, \ldots, a_{n} are i.i.d. complex Gaussian random variables with $\mathbf{E}\left(a_{j}\right)=\mathbf{E}\left(a_{j} a_{k}\right)=0$ and $\mathbf{E}\left(a_{j} \bar{a}_{k}\right)=\delta_{j k}$. Thus we get a probability measure Prob_{n} on \mathcal{P}_{n}, the polynomials of degree at most n, identified with \mathbb{C}^{n+1}, where, for $G \subset \mathbb{C}^{n+1}$,

$$
\operatorname{Prob}_{n}(G)=\frac{1}{\pi^{n+1}} \int_{G} e^{-\sum_{j=0}^{n}\left|a_{j}\right|^{2}} d m\left(a_{0}\right) \cdots d m\left(a_{n}\right)
$$

where $d m=$ Lebesgue measure on \mathbb{C}.

Asymptotic expectation

Write $p_{n}(z)=a_{n} \prod_{j=1}^{n}\left(z-\zeta_{j}\right)$ and call ${\tilde{p_{p}}}:=\frac{1}{n} \sum_{j=1}^{n} \delta_{\zeta_{j}}$ the normalized zero measure of p_{n}. Note

$$
\tilde{Z}_{p_{n}}=\Delta \frac{1}{n} \log \left|p_{n}\right|
$$

where (ignore 2π) $\Delta \log |z|=\delta_{0}$.
What can we say about asymptotics of $\mathbf{E}\left(\widetilde{Z}_{p_{n}}\right)$ as $n \rightarrow \infty$?
Here, $\mathbf{E}\left(\widetilde{Z}_{p_{n}}\right)$ is a measure defined, for $\psi \in C_{c}(\mathbb{C})$, as

$$
\left(\mathbf{E}\left(\widetilde{Z}_{p_{n}}\right), \psi\right)_{\mathbb{C}}:=\int_{\mathbb{C}^{n+1}}\left(\widetilde{Z}_{p_{n}}, \psi\right)_{\mathbb{C}} d \operatorname{Prob}_{n}\left(\mathbf{a}^{(\mathbf{n})}\right)
$$

where $\mathbf{a}^{(\mathbf{n})}=\left(a_{0}, \ldots, a_{n}\right)$ and $\left(\widetilde{Z}_{p_{n}}, \psi\right)_{\mathbb{C}}=\frac{1}{n} \sum_{j=1}^{n} \psi\left(\zeta_{j}\right)$.

Key idea: Reproducing kernel and monomials

Note that $\left\{z^{j}\right\}_{j=0, \ldots, n}:=\left\{b_{j}(z)\right\}_{j=0, \ldots, n}$ form an orthonormal basis for \mathcal{P}_{n} in $L^{2}\left(\mu_{S^{1}}\right)$ where $\mu_{S^{1}}=\frac{1}{2 \pi} d \theta$ on $S^{1}=\{z:|z|=1\}$.
Proposition. $\lim _{n \rightarrow \infty} \mathbf{E}\left(\widetilde{Z}_{p_{n}}\right)=\mu_{S^{1}}$.

$$
S_{n}(z, w):=\sum_{j=0}^{n} b_{j}(z) \overline{b_{j}(w)}=\sum_{j=0}^{n} z^{j} \bar{w}^{j}
$$

is the reproducing kernel for point evaluation at z on \mathcal{P}_{n}. On the diagonal $w=z$, we have $S_{n}\left(e^{i \theta}, e^{i \theta}\right)=n+1$ and

$$
K_{n}(z):=S_{n}(z, z)=\sum_{j=0}^{n}|z|^{2 j}=\frac{1-|z|^{2 n+2}}{1-|z|^{2}} \text { Thus: }
$$

$$
\frac{1}{2 n} \log K_{n}(z)=\frac{1}{2 n} \log \frac{1-|z|^{2 n+2}}{1-|z|^{2}} \rightarrow \log ^{+}|z|=\max [0, \log |z|]
$$

locally uniformly on \mathbb{C}. Note that $\Delta \log ^{+}|z|=\mu_{S^{1}}$; thus

$$
\Delta\left(\frac{1}{2 n} \log K_{n}(z)\right) \rightarrow \mu_{S^{1}}
$$

Write $\left|p_{n}(z)\right|=\left|\sum_{j=0}^{n} a_{j} b_{j}(z)\right|=:\left|<\mathbf{a}^{(\mathbf{n})}, \mathbf{b}^{(\mathbf{n})}(z)>_{\mathbb{C}^{n+1}}\right|$

$$
=K_{n}(z)^{1 / 2}\left|<\mathbf{a}^{(\mathbf{n})}, \mathbf{u}^{(\mathbf{n})}(\mathbf{z})>_{\mathbb{C}^{n+1}}\right|
$$

where

$$
\mathbf{u}^{(\mathbf{n})}(\mathbf{z}):=\frac{\mathbf{b}^{(\mathbf{n})}(z)}{\left\|\mathbf{b}^{(\mathbf{n})}(z)\right\|}=\frac{\mathbf{b}^{(\mathbf{n})}(z)}{K_{n}(z)^{1 / 2}}
$$

Use $\left|p_{n}(z)\right|=K_{n}(z)^{1 / 2}\left|<\mathbf{a}^{(\mathbf{n})}, \mathbf{u}^{(\mathbf{n})}(\mathbf{z})>_{\mathbb{C}^{n+1}}\right|:$

For $\psi \in C_{c}(\mathbb{C})\left(\right.$ recall $\left.\tilde{Z}_{p_{n}}=\Delta \frac{1}{n} \log \left|p_{n}\right|\right)$

$$
\begin{gathered}
\left(\mathbf{E}\left(\tilde{Z}_{p_{n}}\right), \psi\right)_{\mathbb{C}}=\int_{\mathbb{C}^{n+1}}\left(\Delta \frac{1}{n} \log \left|p_{n}(z)\right|, \psi(z)\right)_{\mathbb{C}} d \operatorname{Prob}_{n}\left(\mathbf{a}^{(\mathbf{n})}\right) \\
=\int_{\mathbb{C}^{n+1}}\left(\Delta \frac{1}{2 n} \log K_{n}(z), \psi(z)\right)_{\mathbb{C}} d \operatorname{Prob} b_{n}\left(\mathbf{a}^{(\mathbf{n})}\right) \\
+\int_{\mathbb{C}^{n+1}}\left(\Delta \frac{1}{n} \log \left|<\mathbf{a}^{(\mathbf{n})}, \mathbf{u}^{(\mathbf{n})}(\mathbf{z})>\mathbb{C}^{n+1}\right|, \psi(z)\right)_{\mathbb{C}} d \operatorname{Prob}_{n}\left(\mathbf{a}^{(\mathbf{n})}\right) .
\end{gathered}
$$

The first term (deterministic) goes to $\int_{S^{1}} \psi d \mu_{S^{1}}$ as $n \rightarrow \infty$ and the second term can be rewritten:

$$
\int_{\mathbb{C}^{n+1}}\left(\frac{1}{n} \log \left|<\mathbf{a}^{(\mathbf{n})}, \mathbf{u}^{(\mathbf{n})}(\mathbf{z})>_{\mathbb{C}^{n+1}}\right|, \Delta \psi(z)\right)_{\mathbb{C}} d \operatorname{Prob} b_{n}\left(\mathbf{a}^{(\mathbf{n})}\right)
$$

$=\int_{\mathbb{C}} \Delta \psi(z)\left[\frac{1}{n} \int_{\mathbb{C}^{n+1}} \log \left|<\mathbf{a}^{(\mathbf{n})}, \mathbf{u}^{(\mathbf{n})}(\mathbf{z})>_{\mathbb{C}^{n+1}}\right| \operatorname{dProb}_{n}\left(\mathbf{a}^{(\mathbf{n})}\right)\right] d m(z)$
(Fubini). By unitary invariance of $\operatorname{dProb}_{n}\left(\mathbf{a}^{(\mathbf{n})}\right)$,

$$
\begin{aligned}
& I_{n}\left(\mathbf{u}^{(\mathbf{n})}(\mathbf{z})\right):=\int_{\mathbb{C}^{n+1}} \log \left|<\mathbf{a}^{(\mathbf{n})}, \mathbf{u}^{(\mathbf{n})}(\mathbf{z})>_{\mathbb{C}^{n+1}}\right| d \operatorname{Prob} b_{n}\left(\mathbf{a}^{(\mathbf{n})}\right) \\
= & \int_{\mathbb{C}^{n+1}} \frac{1}{\pi^{n+1}} \log \left|<\mathbf{a}^{(\mathbf{n})}, \mathbf{u}^{(\mathbf{n})}(\mathbf{z})>_{\mathbb{C}^{n+1}}\right| e^{-\sum_{j=0}^{n}\left|a_{j}\right|^{2}} d m\left(a_{0}\right) \cdots d m\left(a_{n}\right) \\
= & \frac{1}{\pi} \int_{\mathbb{C}} \log \left|a_{0}\right| e^{-\left|a_{0}\right|^{2}} d m\left(a_{0}\right)=\mathbf{E}\left(\log \left|a_{0}\right|\right)\left(\operatorname{let} \mathbf{u}^{(\mathbf{n})}(\mathbf{z}) \rightarrow(1,0, \ldots, 0)\right)
\end{aligned}
$$

is a constant for unit vectors $\mathbf{u}^{(\mathbf{n})}(\mathbf{z})$, independent of n (and z).
Thus the second term in $\left(\mathbf{E}\left(\widetilde{Z}_{p_{n}}\right), \psi\right)_{\mathbb{C}}$ is $0(1 / n)$ and

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left(\tilde{Z}_{p_{n}}\right)=\mu_{S^{1}}
$$

Remarks

(1) Clearly "wiggle room" for improvement: more general random coefficients than normalized complex Gaussian
(2) Generalizations to random polynomials $\sum_{j=0}^{n} a_{j} b_{j}(z)$
(3) "Harder" probabilistic results involve analyzing

$$
K_{n}(z)=S_{n}(z, z)=\sum_{j=0}^{n}\left|b_{j}(z)\right|^{2}
$$

and off-diagonal asymptotics of $S_{n}(z, w)$
(4) Sequences vs. arrays of i.i.d. random variables

$$
\sum_{j=0}^{n} a_{j} b_{j}(z) \text { vs. } \sum_{j=0}^{n} a_{j}^{(n)} b_{j}(z)
$$

(5) Weighted case: $\sum_{j=0}^{n} a_{j}^{(n)} b_{j}^{(n)}(z)$

General univariate setting: Extremal functions

For $K \subset \mathbb{C}$ compact, we define

$$
\begin{aligned}
& V_{K}(z):=\sup \{u(z): u \in L(\mathbb{C}), u \leq 0 \text { on } K\} \\
= & \sup \left\{\frac{1}{\operatorname{deg}(p)} \log |p(z)|: p \in \cup_{n} \mathcal{P}_{n},\|p\|_{K} \leq 1\right\}
\end{aligned}
$$

where $L(\mathbb{C})=\{u \in S H(\mathbb{C}): u(z)-\log |z|=0(1),|z| \rightarrow \infty\}$. For $K=S^{1}, V_{S^{1}}(z)=\log ^{+}|z|$. If V_{K} is continuous, defining

$$
\phi_{n}(z):=\sup \left\{|p(z)|: p \in \mathcal{P}_{n},\|p\|_{K} \leq 1\right\}, \text { we have }
$$

$$
\frac{1}{n} \log \phi_{n}(z) \rightarrow V_{K}(z) \text { locally uniformly on } \mathbb{C} .
$$

Let $\mu_{K}:=\Delta V_{K}$.

General univariate setting: Potential theory

Let $p_{\mu_{K}}(z):=\int_{K} \log \frac{1}{|z-\zeta|} d \mu_{K}(\zeta)$ so $\Delta p_{\mu_{K}}=-\mu_{K}$ and

$$
I\left(\mu_{K}\right)=\int_{K} p_{\mu_{K}}(z) d \mu_{K}(z)=\inf _{\mu \in \mathcal{M}(K)} I(\mu)
$$

where $I(\mu)=\int_{K} \int_{K} \log \frac{1}{|z-\zeta|} d \mu(z) d \mu(\zeta)$. Then

$$
V_{K}(z)=I\left(\mu_{K}\right)-p_{\mu_{K}}(z) \text { so } \Delta V_{K}=\mu_{K} .
$$

We can recover V_{K} and μ_{K} via L^{2}-methods. Note if τ is a measure on K such that

$$
\|p\|_{K} \leq M_{n}\|p\|_{L^{2}(\tau)} \text { for all } p \in \mathcal{P}_{n}
$$

then (exercise!) the best constant is given by

$$
M_{n}=\max _{z \in K} K_{n}(z)^{1 / 2}=\max _{z \in K}\left(\sum_{j=0}^{n}\left|b_{j}(z)\right|^{2}\right)^{1 / 2}
$$

where $\left\{b_{j}\right\}_{j=0}^{n}$ form an orthonormal basis for \mathcal{P}_{n} in $L^{2}(\tau)$.

Relate $K_{n}, \phi_{n}: \frac{1}{n+1} \leq \frac{K_{n}(Z)}{\phi_{n}(Z)^{2}} \leq M_{n}^{2}(n+1)$

The right-hand inequality is from $\|p\|_{K} \leq M_{n}\|p\|_{L^{2}(\tau)}$; the left-hand inequality uses the reproducing property of $S_{n}(z, w)$. If (K, τ) is (BM) i.e., $M_{n}^{1 / n} \rightarrow 1$, this shows

$$
\frac{1}{2 n} \log K_{n}(z) \asymp \frac{1}{n} \log \phi_{n}(z) \asymp V_{K}(z) .
$$

Indeed:
If V_{K} is continuous, then (BM) for (K, τ) is equivalent to

$$
\lim _{n \rightarrow \infty} \frac{1}{2 n} \log K_{n}(z)=V_{K}(z) \text { locally uniformly on } \mathbb{C} .
$$

Hence

$$
\Delta \frac{1}{2 n} \log K_{n}(z) \rightarrow \mu_{K}
$$

Thus, what we have really proved is the following:

Theorem

Let τ be a (BM) measure on a compact set K with V_{K} continuous. Consider random polynomials of the form $p_{n}(z)=\sum_{j=0}^{n} a_{j} b_{j}(z)$ where $\left\{b_{j}(z)\right\}_{j=0, \ldots, n}$ form an orthonormal basis for \mathcal{P}_{n} in $L^{2}(\tau)$ and a_{0}, \ldots, a_{n} are i.i.d. complex Gaussian random variables with $\mathbf{E}\left(a_{j}\right)=\mathbf{E}\left(a_{j} a_{k}\right)=0$ and $\mathbf{E}\left(a_{j} \bar{a}_{k}\right)=\delta_{j k}$. Then

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left(\widetilde{Z}_{p_{n}}\right)=\mu_{K}
$$

Note any (BM) measure yields the same limit measure μ_{K} (this is a type of "universality"). "Same" result in weighted case ($b_{j}^{(n)}$ change with n); limit $\mu_{K, Q}$. Conclusion: limit depends on basis.

Further questions on random polynomials

The method above was used (and generalized) by Bloom, Shiffman, Zelditch (and others).

We briefly address the following questions:
(1) What can we say about generic convergence of the (random) sequence of subharmonic functions $\left\{\frac{1}{n} \log \left|p_{n}\right|\right\}$?
(2) Can we allow more general coefficients than i.i.d. complex Gaussian?

We write \mathcal{P} for the space of sequences of random polynomials; note if we consider random polynomials $p_{n} \in \mathcal{P}_{n}$ as

$$
p_{n}(z)=\sum_{j=0}^{n} a_{j}^{(n)} b_{j}(z), a_{j}^{(n)} \text { i.i.d }
$$

then

$$
\mathcal{P}:=\otimes_{n=1}^{\infty}\left(\mathcal{P}_{n}, \operatorname{Prob}_{n}\right)=\otimes_{n=1}^{\infty}\left(\mathbb{C}^{n+1}, \operatorname{Prob}_{n}\right) .
$$

Also (relevant for weighted case) can have $b_{j_{*}}^{(n)}(z)$.

General coefficients:

The following is due to Ibragimov/Zaporozhets (2013):

Theorem

For random Kac polynomials of the form $p_{n}(z)=\sum_{j=0}^{n} a_{j} z^{j}$ with a_{j} i.i.d., $\mathbf{E}\left(\log \left(1+\left|a_{j}\right|\right)\right)<\infty$ is a necessary and sufficient condition for

$$
\widetilde{Z}_{p_{n}}=\Delta\left(\frac{1}{n} \log \left|p_{n}\right|\right) \rightarrow \frac{1}{2 \pi} d \theta \text { amost surely in } \mathcal{P}
$$

Kabluchko/Zaporozhets (2014) considered p. s. of random analytic functions of the form $G_{n}(z)=\sum_{j=0}^{n} a_{j} f_{n, j} z^{j}$ with deterministic coefficients $\left\{f_{n, j}\right\}$ satisfying certain hypotheses to get conv. in prob. to a target measure. We discuss recent generalizations by Tom BLOOM and Duncan DAUVERGNE (2018).

Conv. in prob. vs. a.s. conv.

Let a_{j} be i.i.d. complex random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$. For $\epsilon>0, n \in \mathbb{Z}^{+}$, let

$$
\begin{gathered}
\Omega_{n, \epsilon}:=\left\{\omega \in \Omega:\left|a_{j}(\omega)\right| \leq e^{\epsilon n}, j=0, \ldots, n\right\} . \\
\mathbf{E}\left(\log \left(1+\left|a_{j}\right|\right)\right)<\infty \Longleftrightarrow \forall \epsilon, \sum_{n=0}^{\infty} \mathbf{P}\left(\Omega_{n, \epsilon}^{c}\right)<\infty \\
\mathbf{P}\left(\left|a_{j}\right|>e^{|z|}\right)=o(1 /|z|) \Rightarrow \forall \epsilon, \lim _{n \rightarrow \infty} \mathbf{P}\left(\Omega_{n, \epsilon}^{c}\right)=0 .
\end{gathered}
$$

When does $\widetilde{Z}_{p_{n}} \rightarrow \mu_{K}$ a.s.? In probability? This latter means for any open set U in the space of prob. measures on \mathbb{C} with $\mu_{K} \in U$, we have $\mathbf{P}\left(\widetilde{Z}_{p_{n}} \in U\right) \rightarrow 0$ as $n \rightarrow \infty$.

Bloom-Dauvergne conv. in prob. result

Let τ be a (BM) measure on a compact set K with V_{K} ctn.
Consider random polynomials of the form $p_{n}(z)=\sum_{j=0}^{n} a_{j} b_{j}(z)$ where $\left\{b_{j}\right\}_{j=0, \ldots, n}$ form an orthonormal basis for \mathcal{P}_{n} in $L^{2}(\tau)$.

Theorem

For random polynomials of the form $p_{n}(z)=\sum_{j=0}^{n} a_{j} b_{j}(z)$, if $\mathbf{P}\left(\left|a_{j}\right|>e^{|z|}\right)=o(1 /|z|)$ then

$$
\widetilde{Z}_{p_{n}}=\Delta\left(\frac{1}{n} \log \left|p_{n}\right|\right) \rightarrow \mu_{K} \text { in probability. }
$$

Moreover, for Kac polynomials $\sum_{j=0}^{n} a_{j} z^{j}$, the condition $\mathbf{P}\left(\left|a_{j}\right|>e^{|z|}\right)=o(1 /|z|)$ is necessary and sufficient for $\widetilde{Z}_{p_{n}} \rightarrow \mu_{S^{1}}=\frac{1}{2 \pi} d \theta$ in probability.

Bloom-Dauvergne a.s. result

Let $\left\{f_{n, j}\right\}$ be deterministic coefficients satisfying certain hypotheses and

$$
V(z):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\sum_{j=0}^{n}\left|f_{n, j}\right||z|^{j}\right) \text { loc. unif. }
$$

Theorem

For random polynomials of the form $p_{n}(z)=\sum_{j=0}^{n} a_{j} f_{n, j} z^{j}$, if $\mathbf{E}\left(\log \left(1+\left|a_{j}\right|\right)\right)<\infty$ then a.s.

$$
\tilde{Z}_{p_{n}}=\Delta\left(\frac{1}{n} \log \left|p_{n}\right|\right) \rightarrow \Delta V
$$

Note $f_{n, j} \equiv 1, \forall j, n$ give Kac poly.'s (and $V(z)=\log ^{+}|z|$).

Sufficiency for $Z_{p_{n}} \rightarrow \mu_{K}$ a.s., in probability

Sufficiency for $\widetilde{Z}_{p_{n}} \rightarrow \mu_{K}$ a.s.:
(1) a.s. $\left\{\left|p_{n}\right|\right\}$ (or $\left\{\log \left|p_{n}\right|\right\}$) locally bounded above
(2) a.s., $\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}(z)\right| \leq V_{K}(z)$, all z
(3) for each z_{j} in a countable dense set $\left\{z_{j}\right\}$, $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}\left(z_{j}\right)\right|=V_{K}\left(z_{j}\right)$ a.s.
Sufficiency for $\widetilde{Z}_{p_{n}} \rightarrow \mu_{K}$ in probability:
(1) For any subsequence $Y \subset \mathbb{Z}^{+}$there is a further subsequence Y_{0} such that, a.s., $\left\{\left|p_{n}\right|\right\}_{n \in Y_{0}}$ is locally bounded above and $\lim \sup _{n \in Y_{0}} \frac{1}{n} \log \left|p_{n}(z)\right| \leq V_{K}(z)$, all z
(2) for each z_{j} in a countable dense set $\left\{z_{j}\right\}$, $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}\left(z_{j}\right)\right|=V_{K}\left(z_{j}\right)$ in probability
Condition $\mathbf{E}\left(\log \left(1+\left|a_{j}\right|\right)\right)<\infty$ gives UPPER BOUND on full sequence (for a.s.) while Condition $\mathbf{P}\left(\left|a_{j}\right|>e^{|z|}\right)=o(1 /|z|)$ gives UPPER BOUND on subsequence (for conv. in prob.)

Lower bound on $\left\{\frac{1}{n} \log \left|p_{n}\right|\right\}$

Need lower bound to show $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}\left(z_{j}\right)\right|=V_{K}\left(z_{j}\right)$ on countable dense set a.s. or in probability. This is the hard part; we just make a remark.
(1) For conv. in prob.: Use Kolmogorov-Rogozin inequality on concentration function of sum $\mathbf{X}_{1}+\cdots \mathbf{X}_{n}$ of random variables to get conv. in prob. of $\frac{1}{n} \log \left|p_{n}\right| \rightarrow V_{K}$ at all but a countable set of points. Here, for \mathbf{X} r.v.,

$$
\mathcal{Q}(\mathbf{X} ; r):=\sup \{z \in \mathbb{C}: \mathbf{P}(\mathbf{X} \in B(z, r))\}
$$

is concentration fcn. of \mathbf{X}. (Idea to use Kolmogorov-Rogozin inequality due to Ibragimov/Zaporozhets).
(2) For a.s. result: Use version of "small ball probability" result of Nguyen-Vu for complex-valued random variables.

Remark on modes of convergence and on to \mathbb{C}^{2}

Let τ be a (BM) measure on $K \subset \mathbb{C}$ with V_{K} ctn. Consider random polynomials of the form $p_{n}(z)=\sum_{j=0}^{n} a_{j}^{(n)} b_{j}^{(n)}(z)$ where $\left\{b_{j}^{(n)}(z)\right\}_{j=0, \ldots, n}$ form o.n. basis for \mathcal{P}_{n} in $L^{2}(\tau)$. Let $\left\{a_{j}^{(n)}\right\}$ i.i.d. such that (e.g., std. complex Gaussian) a.s. in \mathcal{P}

$$
\left(\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}(z)\right|\right)^{*}=V_{K}(z)
$$

pointwise for all $z \in \mathbb{C}\left(u^{*}(z):=\lim \sup _{\zeta \rightarrow z} u(\zeta)\right)$. Then
(1) $\frac{1}{n} \log \left|p_{n}\right| \rightarrow V_{K}$ in $L_{l o c}^{1}(\mathbb{C})$ a.s. \mathcal{P}; hence
(2) $\widetilde{Z}_{p_{n}}=\Delta\left(\frac{1}{n} \log \left|p_{n}\right|\right) \rightarrow \mu_{K}=\Delta V_{K}$ a.s. \mathcal{P} (Δ linear operator).

Onto \mathbb{C}^{2}

Let's work in \mathbb{C}^{2} with variables $z=\left(z_{1}, z_{2}\right)$. For a polynomial

$$
p(z)=\sum_{j+k=0}^{n} a_{j k} z_{1}^{j} z_{2}^{k} \in \mathcal{P}_{n},
$$

the zero set $Z_{p}=\left\{z \in \mathbb{C}^{2}: p(z)=0\right\}$ is a one-dimensional (complex) analytic (algebraic) variety - unbounded.
Given two polynomials $p_{1}(z)$ and $p_{2}(z)$ in \mathcal{P}_{n}, consider
(1) the polynomial mapping $\mathbf{F}(z):=\left(p_{1}(z), p_{2}(z)\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ and
(2) the common zeros of p_{1} and p_{2} :

$$
Z_{\mathbf{F}}:=\left\{z \in \mathbb{C}^{2}: p_{1}(z)=p_{2}(z)=0\right\} .
$$

By Bertini/Bezout, generically Z_{F} consists of n^{2} points.
Example: If $p_{1}(z)=z_{1}^{n}-1$ and $p_{2}(z)=z_{2}^{n}-1$, then

$$
Z_{\mathbf{F}}=\left\{\left(e^{2 \pi i j / n}, e^{2 \pi i k / n}\right): j, k=0, \ldots, n-1\right\} .
$$

We study (normalized versions of) Z_{p} and/or $Z_{\mathbf{F}}$. Consider

$$
\frac{1}{n} \log |p| \text { and/or } \frac{1}{n} \log \|\mathbf{F}\|
$$

where $\|\mathbf{F}\|^{2}=\left|p_{1}\right|^{2}+\left|p_{2}\right|^{2}$. For u a real or complex-valued function on a domain D in \mathbb{C}^{2}, we write the 1 -form

$$
d u=\sum_{j=1}^{2} \frac{\partial u}{\partial z_{j}} d z_{j}+\sum_{j=1}^{2} \frac{\partial u}{\partial \bar{z}_{j}} d \bar{z}_{j}=: \partial u+\bar{\partial} u
$$

as the sum of a form ∂u of bidegree $(1,0)$ and a form $\bar{\partial} u$ of bidegree $(0,1)$ where

$$
\frac{\partial u}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial u}{\partial x_{j}}-i \frac{\partial u}{\partial y_{j}}\right) ; \quad \frac{\partial u}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial u}{\partial x_{j}}+i \frac{\partial u}{\partial y_{j}}\right)
$$

and we have

$$
d z_{j}=d x_{j}+i d y_{j} ; d \bar{z}_{j}=d x_{j}-i d y_{j}
$$

For a complex-valued $f \in C^{1}(D)$, we say f is holomorphic in D if $\bar{\partial} f=0$ in $D\left(\Longleftrightarrow f\right.$ is separately holomorphic in z_{1} and $\left.z_{2}\right)$.

We also define

$$
d^{c} u:=i(\bar{\partial} u-\partial u)
$$

Note that if $u \in C^{2}(D)$, the linear operator

$$
d d^{c} u=2 i \partial \bar{\partial} u=2 i \sum_{j, k=1}^{2} \frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}} d z_{j} \wedge d \bar{z}_{k}
$$

($(1,1)$-form) so that the coefficients of the 2 -form $d d^{c} u$ give the entries of the 2×2 complex Hessian matrix

$$
H(u):=\left[\frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}}\right]_{j, k=1}^{2},
$$

of u. Elementary linear algebra shows that the nonlinear operator

$$
\left(d d^{c} u\right)^{2}:=d d^{c} u \wedge d d^{c} u=c_{2} \operatorname{det} H(u) d V
$$

where $d V=\left(\frac{1}{2 i}\right)^{2} d z_{1} \wedge d \bar{z}_{1} \wedge d z_{2} \wedge d \bar{z}_{2}$ is the volume form on \mathbb{C}^{2} and c_{2} is a dimensional constant.

Pluripotential theory in \mathbb{C}^{2}

A function $u: D \rightarrow[-\infty,+\infty)$ defined on a domain $D \subset \mathbb{C}^{2}$ is plurisubharmonic (psh) in D if
(1) u is uppersemicontinuous on D and
(2) $\left.u\right|_{D \cap I}$ is subharmonic (shm) on components of $D \cap /$ for each complex line (one-dimensional (complex) affine space) I.
For $u \in C^{2}(D), u$ is psh in D if and only if $H(u)=\left[\frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}}\right]_{j, k=1}^{2}$ is positive semi-definite; thus $\left(d d^{c} u\right)^{2}$ is a positive measure. If f is holomorphic in $D, u=\log |f|$ is psh in D. In particular, $\log |p|$ is psh in \mathbb{C}^{2} for any polynomial p. For $p_{n} \in \mathcal{P}_{n}$,

$$
\widetilde{Z}_{p_{n}}:=d d^{c}\left(\frac{1}{n} \log \left|p_{n}\right|\right)\left(\text { can't take } d d^{c}(\cdot)^{2}!!\right)
$$

is the normalized zero current of $p_{n}((1,1)-$ form with dist. coeff. $)$. Example: If $p_{n}(z)=z_{1}^{n}$, then $\widetilde{Z}_{p_{n}}$ is the current of integration on the variety $\left\{z \in \mathbb{C}^{2}: z_{1}=0\right\}$. Note this is unbounded.

For a polynomial mapping $\mathbf{F}(z):=\left(p_{1}(z), p_{2}(z)\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ with $p_{1}, p_{2} \in \mathcal{P}_{n}$, the zero set

$$
Z_{\mathbf{F}}:=\left\{z \in \mathbb{C}^{2}: p_{1}(z)=p_{2}(z)=0\right\}
$$

generically consists of n^{2} distinct points and "generically" one can define the normalized zero current for \mathbf{F} as

$$
\begin{gathered}
\widetilde{Z}_{\mathbf{F}}:=d d^{c}\left(\frac{1}{n} \log \left|p_{1}\right|\right) \wedge d d^{c}\left(\frac{1}{n} \log \left|p_{2}\right|\right) \\
=\left(d d^{c} \frac{1}{n} \log \| \mathbf{F}_{n}| |\right)^{2}=\left(d d^{c} \frac{1}{2 n} \log \left[\left|p_{1}\right|^{2}+\left|p_{2}\right|^{2}\right]\right)^{2} .
\end{gathered}
$$

Example: If $p_{1}(z)=z_{1}^{n}-1$ and $p_{2}(z)=z_{2}^{n}-1$, then

$$
\tilde{Z}_{\mathbf{F}}=\frac{1}{n^{2}} \sum_{j, k=0}^{n-1} \delta_{\left(e^{2 \pi i j / n}, e^{2 \pi i k / n}\right)}
$$

Follows from $\left(d d^{c}\left[\frac{1}{2} \log \left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\right]\right)^{2}=\delta_{(0,0)}$.

Generalization of V_{K}

The definition of V_{K} and BM measure are the "same" as in \mathbb{C}, e.g., for $K \subset \mathbb{C}^{2}$ nonpluripolar,

$$
\begin{aligned}
& V_{K}(z):=\sup \left\{u(z): u \in L\left(\mathbb{C}^{2}\right), u \leq 0 \text { on } K\right\} \\
= & \sup \left\{\frac{1}{\operatorname{deg}(p)} \log |p(z)|: p \in \cup_{n} \mathcal{P}_{n},\|p\|_{K} \leq 1\right\}
\end{aligned}
$$

where $L\left(\mathbb{C}^{2}\right)=\left\{u \in P S H\left(\mathbb{C}^{2}\right): u(z)-\log |z|=0(1),|z| \rightarrow \infty\right\}$. Let τ be a BM measure on K; let $\left\{b_{j k}^{(n)}\right\}$ be an orthonormal basis for $L^{2}(\tau)$ and consider random polynomials

$$
p(z)=\sum_{j+k=0}^{n} a_{j k}^{(n)} b_{j k}^{(n)}(z) \in \mathcal{P}_{n}
$$

where $a_{j k}^{(n)}$ are i.i.d. complex random variables. Let $m_{n}=\operatorname{dim} \mathcal{P}_{n}=\binom{n+2}{2}$ and

$$
\mathcal{P}:=\otimes_{n=1}^{\infty}\left(\mathbb{C}^{m_{n}}, \operatorname{Prob}_{m_{n}}\right), \mathcal{F}:=\otimes_{n=1}^{\infty}\left(\left(\mathbb{C}^{m_{n}}\right)^{2},\left(\operatorname{Prob}_{m_{n}}\right)^{2}\right)
$$

Almost sure convergence

Theorem

For $a_{j k}^{(n)}$ i.i.d. complex random variables with "tail hyp." consider sequences of random polynomials $\left\{p_{n}\right\} \in \mathcal{P}$ and sequences of random polynomial mappings $\mathbf{F}_{n}=\left(p_{n}^{(1)}, p_{n}^{(2)}\right) \in \mathcal{F}$. Then a.s. we have both (i.e., in \mathcal{P} or in \mathcal{F})

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}\right|=V_{K} \text { ptwse. \& in } L_{\text {loc }}^{1}\left(\mathbb{C}^{2}\right) \text { and } \\
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathbf{F}_{n}\right\|=V_{K} \text { ptwse. \& in } L_{\text {loc }}^{1}\left(\mathbb{C}^{2}\right) \text { hence } \\
\lim _{n \rightarrow \infty} d d^{c}\left(\frac{1}{n} \log \left\|\mathbf{F}_{n}\right\|\right) \\
=\lim _{n \rightarrow \infty} d d^{c}\left(\frac{1}{n} \log \left|p_{n}\right|\right)=d d^{c} V_{K}
\end{gathered}
$$

as positive currents (recall $d d^{c}$ is a linear operator).

General coeff.: Bloom-Dauvergne in \mathbb{C}^{2}

Theorem

Let $K \subset \mathbb{C}^{2}$ with V_{K} continuous. For sequences of random polynomials $\left\{p_{n}=\sum_{j+k=0}^{n} a_{j k} b_{j k}(z)\right\}$ where $a_{j k}$ i.i.d. with $\mathbf{P}\left(\left|a_{j k}\right|>e^{|z|}\right)=o\left(1 /|z|^{2}\right),\left\{b_{j k}\right\}$ o.n. for $L^{2}(\tau)(\tau B M)$,

$$
\begin{aligned}
& \frac{1}{n} \log \left|p_{n}\right| \rightarrow V_{K} \text { in prob. in } L_{\text {loc }}^{1}\left(\mathbb{C}^{2}\right) \text { and } \\
& \quad d d^{c}\left(\frac{1}{n} \log \left|p_{n}\right|\right) \rightarrow d d^{c} V_{K} \text { in prob.. }
\end{aligned}
$$

They also prove a result on a.s. convergence for the 2-d Kac ensemble (here $b_{j k}(z)=z_{1}^{j} z_{2}^{k}$) under the hypothesis

$$
\mathbf{E}\left(\log \left(1+\left|a_{j k}\right|\right)\right)^{2}<\infty
$$

$d d^{c} V_{K}$ vs. $\mu_{K}:=\left(d d^{c} V_{K}\right)^{2}$

For K not pluripolar, $d d^{c} V_{K}$ generically has unbounded support;

$$
\mu_{K}:=\left(d d^{c} V_{K}\right)^{2}
$$

is the \mathbb{C}^{2}-analogue of the equilibrium measure and is supported in K. We have an asymptotic expectation result with tail hyp. on $a_{j k}^{(n)}$ using the "probabilistic Poincare-Lelong formula":

$$
\begin{aligned}
& \mathbf{E}\left(\tilde{Z}_{\mathbf{F}_{n}}\right):=\mathbf{E}\left(\frac{1}{n} d d^{c} \log \left|p_{n}^{(1)}\right| \wedge \frac{1}{n} d d^{c} \log \left|p_{n}^{(2)}\right|\right) \\
& \quad=\mathbf{E}\left(\frac{1}{n} d d^{c} \log \left|p_{n}^{(1)}\right|\right) \wedge \mathbf{E}\left(\frac{1}{n} d d^{c} \log \left|p_{n}^{(2)}\right|\right)
\end{aligned}
$$

i.e., when $n \rightarrow \infty, \mathbf{F}_{n}=\left(p_{n}^{(1)}, p_{n}^{(2)}\right)$,

$$
\mathbf{E}\left(\widetilde{Z}_{\mathbf{F}_{n}}\right)=\mathbf{E}\left(\widetilde{Z}_{p_{n}^{(1)}}\right) \wedge \mathbf{E}\left(\widetilde{Z}_{p_{n}^{(2)}}\right) \rightarrow\left(d d^{c} V_{K}(z)\right)^{2}
$$

The fact that $\tilde{Z}_{\mathbf{F}_{n}} \rightarrow\left(d d^{c} V_{K}\right)^{2}$ as positive measures a.s. in \mathcal{F} is a deeper result of T. Bayraktar (IUMJ, 2016).

Random polynomial mappings in \mathbb{C}^{2} : Modification

For $K \subset \mathbb{C}^{2}$ compact, we know

$$
\begin{gathered}
V_{K}\left(z_{1}, z_{2}\right)=\sup \left\{\frac{1}{\operatorname{deg}(p)} \log \left|p\left(z_{1}, z_{2}\right)\right|:\|p\|_{K} \leq 1\right\} \\
=\sup \left\{\frac{1}{2 \operatorname{deg}(P)} \log \left[\left|p_{1}\left(z_{1}, z_{2}\right)\right|^{2}+\left|p_{2}\left(z_{1}, z_{2}\right)\right|^{2}\right]:\left\|p_{i}\right\|_{K} \leq 1, i=1,2\right\}
\end{gathered}
$$

$$
\text { where } \operatorname{deg}\left(p_{1}\right)=\operatorname{deg}\left(p_{2}\right)=: \operatorname{deg}(P)\left(P:=\left(p_{1}, p_{2}\right)\right)
$$

Definition

For $K_{1}, K_{2} \subset \mathbb{C}^{2}$ compact with $V_{K_{1}}, V_{K_{2}}$ ctn.,

$$
\begin{gathered}
U_{K_{1}, K_{2}}\left(z_{1}, z_{2}\right):= \\
\sup \left\{\frac{1}{2 \operatorname{deg}(P)} \log \left[\left|p_{1}\left(z_{1}, z_{2}\right)\right|^{2}+\left|p_{2}\left(z_{1}, z_{2}\right)\right|^{2}\right]:\left\|p_{i}\right\|_{K_{i}} \leq 1\right\}
\end{gathered}
$$

We have $U_{K_{1}, K_{2}}=\max \left[V_{K_{1}}, V_{K_{2}}\right]$ in all of \mathbb{C}^{2}.

Let $\left\{p_{\nu}^{(n)}\right\}_{|\nu| \leq n}$ be an o.n. basis of \mathcal{P}_{n} in $L^{2}\left(\mu_{1}\right)$ where μ_{1} is a BM measure on K_{1} and let $\left\{q_{\nu}^{(n)}\right\}_{|\nu| \leq n}$ be an o.n. basis of \mathcal{P}_{n} in $L^{2}\left(\mu_{2}\right)$ where μ_{2} is a BM measure on K_{2}. Consider random polynomial mappings of degree at most n of the form

$$
\begin{gathered}
\mathbf{H}_{\mathbf{n}}(z):=\left(H_{n}^{(1)}(z), H_{n}^{(2)}(z)\right) \text { where } \\
H_{n}^{(1)}(z)=\sum_{|\nu| \leq n} a_{\nu}^{(n)} p_{\nu}^{(n)}(z), H_{n}^{(2)}(z)=\sum_{|\nu| \leq n} b_{\nu}^{(n)} q_{\nu}^{(n)}(z)
\end{gathered}
$$

and $a_{\nu}^{(n)}, b_{\nu}^{(n)}$ are i.i.d. complex random variables with a distribution satisfying mild tail probability requirements. Identify this more general \mathcal{F} with $\otimes_{n=1}^{\infty}\left(\left(\mathbb{C}^{m_{n}}\right)^{2},\left(\operatorname{Prob}_{m_{n}}\right)^{2}\right)$.

Theorem
Almost surely in \mathcal{F} we have

$$
\begin{aligned}
\left(\limsup _{n \rightarrow \infty}\right. & \frac{1}{2 n} \log \left[\left|H_{n}^{(1)}(z)\right|^{2}+\left|H_{n}^{(2)}(z)\right|^{2}\right)^{*} \\
& =\max \left[V_{K_{1}}(z), V_{K_{2}}(z)\right]
\end{aligned}
$$

pointwise for all $(z) \in \mathbb{C}^{2}$ and a.s.

$$
\frac{1}{2 n} \log \left[\left|H_{n}^{(1)}(z)\right|^{2}+\left|H_{n}^{(2)}(z)\right|\right]^{2} \rightarrow \max \left[V_{K_{1}}(z), V_{K_{2}}(z)\right]
$$

in $L_{\text {loc }}^{1}\left(\mathbb{C}^{2}\right)$. Hence ($d d^{c}$ linear operator) a.s.

$$
\begin{aligned}
& d d^{c}\left(\frac{1}{2 n} \log \left[\left|H_{n}^{(1)}(z)\right|^{2}+\left|H_{n}^{(2)}(z)\right|\right]^{2}\right) \\
& \quad \rightarrow d d^{c}\left(\max \left[V_{K_{1}}(z), V_{K_{2}}(z)\right]\right)
\end{aligned}
$$

as positive currents (same result in weighted case).

However, from Bayraktar's results, we have a.s. in \mathcal{F}

$$
\begin{equation*}
\left(d d^{c} \frac{1}{2 n} \log \left[\left|H_{n}^{(1)}\right|^{2}+\left|H_{n}^{(2)}\right|^{2}\right]\right)^{2} \rightarrow d d^{c} V_{K_{1}} \wedge d d^{c} V_{K_{2}} \tag{1}
\end{equation*}
$$

Indeed, it is relatively straightforward to deduce

$$
\begin{gathered}
\mathbf{E}\left(\left(d d^{c} \frac{1}{2 n} \log \left[\left|H_{n}^{(1)}\right|^{2}+\left|H_{n}^{(2)}\right|^{2}\right]\right)^{2}\right) \rightarrow d d^{c} V_{K_{1}} \wedge d d^{c} V_{K_{2}} \\
\quad \text { from } \mathbf{E}\left(d d^{c} \frac{1}{n} \log \left|H_{n}^{(j)}\right|\right) \rightarrow d d^{c} V_{K_{j}}, j=1,2
\end{gathered}
$$

and the probabilistic Poincaré-Lelong formula. The previous theorem "suggests" this limit might instead be

$$
\left(d d^{c} \max \left[V_{K_{1}}, V_{K_{2}}\right]\right)^{2}
$$

(1) $L_{\text {loc }}^{1}\left(\mathbb{C}^{2}\right)$ convergence is not sufficient to conclude Monge-Ampère convergence!
(2) No Monge-Ampère convergence theorems for non-locally bounded fcn's.

These currents (here, pos. measures) are generally much different:

$$
\left(d d^{c} \max [u, v]\right)^{2}=d d^{c} \max [u, v] \wedge d d^{c}(u+v)-d d^{c} u \wedge d d^{c} v
$$

In general, both $\operatorname{supp}\left(d d^{c} u \wedge d d^{c} v\right)$ and $\operatorname{supp}\left(d d^{c} \max [u, v]\right)^{2}$ are unbounded - and difficult to compute.
Thus: Once $K_{1} \neq K_{2}$, positive probability some "zeros" go to infinity!
Remark. $K \rightarrow K_{1}, K_{2}$ changes o.n. basis, i.e., different for $H_{n}^{(1)}$ and $H_{n}^{(2)}$.

Hard to calculate $d d^{c} V_{K_{1}} \wedge d d^{c} V_{K_{2}}$.

Example: Two balls

For $u\left(z_{1}, z_{2}\right):=\frac{1}{2} \log ^{+}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$ and
$v\left(z_{1}, z_{2}\right):=\frac{1}{2} \log ^{+}\left(\left|z_{1}-a\right|^{2}+\left|z_{2}\right|^{2}\right)$ in \mathbb{C}^{2}, two extremal functions for unit balls about $(0,0)$ and $(a, 0)$, outside of the union of these balls the density of $d d^{c} u \wedge d d^{c} v$ is (modulo a constant)

$$
\frac{|a|^{2}\left|z_{2}\right|^{2}}{\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{2}\left(\left|z_{1}-a\right|^{2}+\left|z_{2}\right|^{2}\right)^{2}}
$$

while $d d^{c} u \wedge d d^{c} v=0$ on the interior of the union. In particular:
(1) this density is positive everywhere outside of the union of the balls (off $z_{2}=0$);
(2) this density goes to 0 everywhere outside of the union of the balls as $a \rightarrow 0$; and
(3) the integral of this density outside of the union of the balls goes to 0 as $a \rightarrow 0$ (because of 2 . and the fact this "total mass" is uniformly bounded (by one, say) for all a).

Another modification: P-extremal functions

Given a convex body $P \subset\left(\mathbb{R}^{+}\right)^{2}$, for $n=1,2, \ldots$ define
$\operatorname{Poly}(n P):=\left\{\sum_{J \in n P \cap\left(\mathbb{Z}^{+}\right)^{2}} c_{J Z^{J}}=\sum_{\left(j_{1}, j_{2}\right) \in n P \cap\left(\mathbb{Z}^{+}\right)^{2}} c_{j_{j}, 2} z_{1}^{j_{1}} z_{2}^{j_{2}}: c J \in \mathbb{C}\right\}$.

$$
\text { Example: } P_{q}:=\left\{\left(x_{1}, x_{2}\right) \in\left(\mathbb{R}^{+}\right)^{2}:\left(x_{1}^{q}+x_{2}^{q}\right)^{1 / q} \leq 1\right\} \text {. }
$$

For $K \subset \mathbb{C}^{2}$ compact, define the P-extremal function

$$
\begin{gathered}
V_{P, K}(z)=\sup \left\{u(z): u \in L_{P}\left(\mathbb{C}^{2}\right), u \leq 0 \text { on } K\right\} \\
=\lim _{n \rightarrow \infty}\left[\sup \left\{\frac{1}{n} \log \left|p_{n}(z)\right|: p_{n} \in \operatorname{Poly}(n P),\left\|p_{n}\right\|_{K} \leq 1\right\}\right]
\end{gathered}
$$

where $L_{P}\left(\mathbb{C}^{2}\right)=\left\{u \in \operatorname{PSH}(\mathbb{C}): u(z)-H_{P}(z)=0(1),|z| \rightarrow \infty\right\}$,

$$
H_{P}(z):=\sup _{J \in P} \log \left|z^{J}\right|:=\sup _{J \in P} \log \left[\left|z_{1}\right|^{j_{1}}\left|z_{2}\right|^{\mid{ }^{2}}\right]
$$

(logarithmic indicator function). For $K=T$, the unit torus,

$$
V_{P, T}(z)=H_{P}(z)=\max _{J \in P} \log \left|z^{J}\right| .
$$

Random Poly $(n P)$ polynomials in \mathbb{C}^{2}

Let μ be a BM measure for $K \subset \mathbb{C}^{2},\left\{p_{\alpha}\right\}$ an o.n. basis for $\operatorname{Poly}(n P)$ in $L^{2}(\mu)$. Consider random Poly $(n P)$ polynomials $P_{n}(z)=\sum_{\alpha \in n P} a_{\alpha}^{(n)} p_{\alpha}(z)$ (where $a_{\alpha}^{(n)}$ are i.i.d. complex-valued random variables) and random polynomial mappings $\mathbf{F}_{\mathbf{n}}(z)=\left(P_{n}(z), Q_{n}(z)\right)$. We get a probability measure Prob_{n} on \mathcal{F}_{n}, the random polynomial mappings with $P_{n}, Q_{n} \in \operatorname{Poly}(n P)$. Identify \mathcal{F}_{n} with $\mathbb{C}^{d_{n}} \times \mathbb{C}^{d_{n}}$ where $d_{n}=\operatorname{dim} \operatorname{Poly}(n P)$. Given $\mathbf{F}_{\mathbf{n}} \in \mathcal{F}_{n}$, let

$$
\widetilde{Z}_{\mathbf{F}_{\mathbf{n}}}:=\left(d d^{c} \frac{1}{n} \log \left\|\mathbf{F}_{\mathbf{n}}\right\|\right)^{2}=\left(d d^{c}\left[\frac{1}{2 n} \log \left(\left|P_{n}\right|^{2}+\left|Q_{n}\right|^{2}\right)\right]\right)^{2} .
$$

For generic $\mathbf{F}_{\mathbf{n}}, \widetilde{Z}_{\mathbf{F}_{\mathbf{n}}}$ is, up to a constant, the normalized zero measure on the (finite) zero set $\left\{P_{n}=Q_{n}=0\right\}$.

Bayraktar (MMJ, 2017), to explain S-Z 2004, proved that

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left(\tilde{Z}_{\mathbf{F}_{\mathbf{n}}}\right)=\left(d d^{c} V_{P, K}\right)^{2} .
$$

as measures. Forming the product probability space of sequences of random polynomial mappings

$$
\mathcal{P}:=\otimes_{n=1}^{\infty}\left(\mathcal{F}_{n}, \operatorname{Prob}_{n}\right)=\otimes_{n=1}^{\infty}\left(\mathbb{C}^{d_{n}} \times \mathbb{C}^{d_{n}}, \operatorname{Prob}_{n}\right)
$$

almost surely (a.s.) in \mathcal{P} (mild tail hyp.) we have

$$
\frac{1}{n} \log \left\|\mathbf{F}_{\mathbf{n}}\right\|=\frac{1}{2 n} \log \left(\left|P_{n}\right|^{2}+\left|Q_{n}\right|^{2}\right) \rightarrow V_{P, K}(z)
$$

pointwise in \mathbb{C}^{2} and in $L_{\text {loc }}^{1}\left(\mathbb{C}^{2}\right)$. Moreover, a.s. in \mathcal{P} we have

$$
\left(d d^{c} \frac{1}{n} \log \left\|\mathbf{F}_{\mathbf{n}}\right\|\right)^{2}=\left(d d^{c}\left[\frac{1}{2 n} \log \left(\left|P_{n}\right|^{2}+\left|Q_{n}\right|^{2}\right)\right]\right)^{2} \rightarrow\left(d d^{c} V_{P, K}\right)^{2} .
$$

as measures. Call $\mu_{P, K}:=\left(d d^{c} V_{P, K}\right)^{2}$.

Example: The torus T and P_{q}

Let $T=S^{1} \times S^{1}=\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right|=\left|z_{2}\right|=1\right\}$. We know that

$$
V_{P, T}\left(z_{1}, z_{2}\right)=H_{P}\left(\log ^{+}\left|z_{1}\right|, \log ^{+}\left|z_{2}\right|\right) .
$$

Let P_{q} be the portion of the I_{q}-ball in $\left(\mathbb{R}^{+}\right)^{2}$ (so $\operatorname{Poly}\left(n P_{q}\right)$ spaces vary with q). For any $1 \leq q \leq \infty$, we have

$$
V_{P_{q}, T}\left(z_{1}, z_{2}\right)=\left[\left(\log ^{+}\left|z_{1}\right|\right)^{q^{\prime}}+\left(\log ^{+}\left|z_{2}\right|\right)^{q^{\prime}}\right]^{1 / q^{\prime}}
$$

$1 / q+1 / q^{\prime}=1$. By invariance under $\left(z_{1}, z_{2}\right) \rightarrow\left(e^{i \theta_{1}} z_{1}, e^{i \theta_{2}} z_{2}\right)$, $\mu_{P_{q}, T}$ is a multiple of Haar measure on $T: \mu_{P_{q}, T}(T)=2 \mathrm{Vol}\left(P_{q}\right)$.

Corollary

With $K=T$, for $P=P_{q}, \mathbf{E}\left(\tilde{Z}_{\mathbf{F}_{\mathbf{n}}}\right) \rightarrow \mu_{P_{q}, T}$ with analogous statements for the a.s. results (normalized monomial basis).

Thus only total mass of target measure changes.

Example: $B_{2}:=\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \leq 1\right\}$ and P_{q}

Here, $V_{P_{1}, B_{2}}=V_{B_{2}}=\frac{1}{2} \log ^{+}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$ and $\mu_{P_{1}, B_{2}}$ is normalized surface area measure on ∂B_{2}. On the other hand:

Theorem

For $V_{P_{\infty}, B_{2}}$, we have $\mu_{P_{\infty}, B_{2}}$ is a multiple of Haar measure on the torus $\left\{\left|z_{1}\right|=\left|z_{2}\right|=1 / \sqrt{2}\right\}$.

Corollary

With $K=B_{2}$, for
(1) $P=P_{1}=\Sigma, \mathbf{E}\left(\widetilde{Z}_{\mathbf{F}_{\mathbf{n}}}\right) \rightarrow \mu_{P_{1}, B_{2}}$, normalized surface area measure on ∂B_{2}; while for
(2) $P=P_{\infty}, \mathbf{E}\left(\widetilde{Z}_{\mathbf{F}_{\mathbf{n}}}\right) \rightarrow \mu_{P_{\infty}, B_{2}}$, a multiple of Haar measure on the torus $\left\{\left|z_{1}\right|=\left|z_{2}\right|=1 / \sqrt{2}\right\}$
with analogous statements for the a.s. results.

Question: As q varies from $q=1$ to $q=\infty, \mu_{P_{q}, B_{2}}$ varies from normalized surface area measure on ∂B_{2} (3-d support) to a multiple of Haar measure on the torus $\left\{\left|z_{1}\right|=\left|z_{2}\right|=1 / \sqrt{2}\right\}$ (2-d support). Thus there must be a "discontinuity" of

$$
S_{q}:=\operatorname{supp}\left(\mu_{P_{q}, B_{2}}\right)
$$

for some q. Does this happen at $q=\infty$ or does S_{q} shrink gradually from $q=1$ to $q=\infty$?
Remark. $K, P \rightarrow K, P^{\prime}$ modifies Poly $(n P) \rightarrow \operatorname{Poly}\left(n P^{\prime}\right)$; e.g., $\operatorname{Poly}\left(n P_{q}\right)$ spaces vary with q. Here $\operatorname{supp}\left(\mu_{P, K}\right), \operatorname{supp}\left(\mu_{P^{\prime}, K}\right)$ stay in K. Similar for weighted extremal fcn. if modify weight.
Problem 1: Compute more examples of $d d^{c} V_{K_{1}} \wedge d d^{c} V_{K_{2}}$.
Problem 2: Compute more examples of $\mu_{P, K}:=\left(d d^{c} V_{P, K}\right)^{2}$.

