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1 Zeros of univariate random polynomials p : C→ C and
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mappings F = (p, q) : C2 → C2 and pluripotential theory;
recent results of Bayraktar

3 Generalizations/modifications and open questions
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Kac-Hammersley polynomials

Consider random polynomials pn(z) =
∑n

j=0 ajz
j where the

coefficients a0, ..., an are i.i.d. complex Gaussian random variables
with E(aj) = E(ajak) = 0 and E(aj āk) = δjk . Thus we get a
probability measure Probn on Pn, the polynomials of degree at
most n, identified with Cn+1, where, for G ⊂ Cn+1,

Probn(G ) =
1

πn+1

∫
G
e−

∑n
j=0 |aj |2dm(a0) · · · dm(an)

where dm =Lebesgue measure on C.
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Asymptotic expectation

Write pn(z) = an
∏n

j=1(z − ζj) and call Z̃pn := 1
n

∑n
j=1 δζj the

normalized zero measure of pn. Note

Z̃pn = ∆
1

n
log |pn|

where (ignore 2π) ∆ log |z | = δ0.
What can we say about asymptotics of E(Z̃pn) as n→∞?

Here, E(Z̃pn) is a measure defined, for ψ ∈ Cc(C), as

(
E(Z̃pn), ψ

)
C :=

∫
Cn+1

(Z̃pn , ψ)C dProbn(a(n))

where a(n) = (a0, ..., an) and (Z̃pn , ψ)C = 1
n

∑n
j=1 ψ(ζj).
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Key idea: Reproducing kernel and monomials

Note that {z j}j=0,...,n := {bj(z)}j=0,...,n form an orthonormal basis
for Pn in L2(µS1) where µS1 = 1

2πdθ on S1 = {z : |z | = 1}.
Proposition. limn→∞ E(Z̃pn) = µS1 .

Sn(z ,w) :=
n∑

j=0

bj(z)bj(w)=
n∑

j=0

z j w̄ j

is the reproducing kernel for point evaluation at z on Pn. On the
diagonal w = z , we have Sn(e iθ, e iθ) = n + 1 and

Kn(z) := Sn(z , z) =
n∑

j=0

|z |2j =
1− |z |2n+2

1− |z |2
Thus:
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1

2n
logKn(z) =

1

2n
log

1− |z |2n+2

1− |z |2
→ log+ |z | = max[0, log |z |]

locally uniformly on C. Note that ∆ log+ |z | = µS1 ; thus

∆
( 1

2n
logKn(z)

)
→ µS1 .

Write |pn(z)| = |
∑n

j=0 ajbj(z)| =: | < a(n),b(n)(z) >Cn+1 |

= Kn(z)1/2| < a(n),u(n)(z) >Cn+1 |

where

u(n)(z) :=
b(n)(z)

||b(n)(z)||
=

b(n)(z)

Kn(z)1/2
.
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Use |pn(z)| = Kn(z)1/2| < a(n),u(n)(z) >Cn+1 |:

For ψ ∈ Cc(C) (recall Z̃pn = ∆ 1
n log |pn|)(

E(Z̃pn), ψ
)
C =

∫
Cn+1

(
∆

1

n
log |pn(z)|, ψ(z)

)
C dProbn(a(n))

=

∫
Cn+1

(
∆

1

2n
logKn(z), ψ(z)

)
CdProbn(a(n))

+

∫
Cn+1

(
∆

1

n
log | < a(n),u(n)(z) >Cn+1 |, ψ(z)

)
C dProbn(a(n)).

The first term (deterministic) goes to
∫
S1 ψdµS1 as n→∞ and

the second term can be rewritten:∫
Cn+1

(1

n
log | < a(n),u(n)(z) >Cn+1 |,∆ψ(z)

)
C dProbn(a(n))
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=

∫
C

∆ψ(z)
[1

n

∫
Cn+1

log | < a(n),u(n)(z) >Cn+1 | dProbn(a(n))
]
dm(z)

(Fubini). By unitary invariance of dProbn(a(n)),

In(u(n)(z)) :=

∫
Cn+1

log | < a(n),u(n)(z) >Cn+1 | dProbn(a(n))

=

∫
Cn+1

1

πn+1
log | < a(n),u(n)(z) >Cn+1 |e−

∑n
j=0 |aj |2dm(a0) · · · dm(an)

=
1

π

∫
C

log |a0|e−|a0|2dm(a0) = E(log |a0|) (let u(n)(z)→ (1, 0, ..., 0))

is a constant for unit vectors u(n)(z), independent of n (and z).
Thus the second term in

(
E(Z̃pn), ψ

)
C is 0(1/n) and

lim
n→∞

E(Z̃pn) = µS1 .
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Remarks

1 Clearly “wiggle room” for improvement: more general random
coefficients than normalized complex Gaussian

2 Generalizations to random polynomials
∑n

j=0 ajbj(z)

3 “Harder” probabilistic results involve analyzing

Kn(z) = Sn(z , z) =
n∑

j=0

|bj(z)|2

and off-diagonal asymptotics of Sn(z ,w)

4 Sequences vs. arrays of i.i.d. random variables

n∑
j=0

ajbj(z) vs.
n∑

j=0

a
(n)
j bj(z).

5 Weighted case:
∑n

j=0 a
(n)
j b

(n)
j (z)
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General univariate setting: Extremal functions

For K ⊂ C compact, we define

VK (z) := sup{u(z) : u ∈ L(C), u ≤ 0 on K}

= sup{ 1

deg(p)
log |p(z)| : p ∈ ∪nPn, ||p||K ≤ 1}

where L(C) = {u ∈ SH(C) : u(z)− log |z | = 0(1), |z | → ∞}. For
K = S1, VS1(z) = log+ |z |. If VK is continuous, defining

φn(z) := sup{|p(z)| : p ∈ Pn, ||p||K ≤ 1}, we have

1

n
log φn(z)→ VK (z) locally uniformly on C.

Let µK := ∆VK .
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General univariate setting: Potential theory

Let pµK (z) :=
∫
K log 1

|z−ζ|dµK (ζ) so ∆pµK = −µK and

I (µK ) =

∫
K
pµK (z)dµK (z) = inf

µ∈M(K)
I (µ)

where I (µ) =
∫
K

∫
K log 1

|z−ζ|dµ(z)dµ(ζ). Then

VK (z) = I (µK )− pµK (z) so ∆VK = µK .

We can recover VK and µK via L2−methods. Note if τ is a
measure on K such that

||p||K ≤ Mn||p||L2(τ) for all p ∈ Pn,

then (exercise!) the best constant is given by

Mn = max
z∈K

Kn(z)1/2 = max
z∈K

(
n∑

j=0

|bj(z)|2)1/2

where {bj}nj=0 form an orthonormal basis for Pn in L2(τ).
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Relate Kn, φn: 1
n+1 ≤

Kn(z)
φn(z)2 ≤ M2

n(n + 1)

The right-hand inequality is from ||p||K ≤ Mn||p||L2(τ); the
left-hand inequality uses the reproducing property of Sn(z ,w). If

(K , τ) is (BM) i.e., M
1/n
n → 1, this shows

1

2n
logKn(z) � 1

n
log φn(z) � VK (z).

Indeed:
If VK is continuous, then (BM) for (K , τ) is equivalent to

lim
n→∞

1

2n
logKn(z) = VK (z) locally uniformly on C.

Hence

∆
1

2n
logKn(z)→ µK .
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Summary

Thus, what we have really proved is the following:

Theorem

Let τ be a (BM) measure on a compact set K with VK continuous.
Consider random polynomials of the form pn(z) =

∑n
j=0 ajbj(z)

where {bj(z)}j=0,...,n form an orthonormal basis for Pn in L2(τ)
and a0, ..., an are i.i.d. complex Gaussian random variables with
E(aj) = E(ajak) = 0 and E(aj āk) = δjk . Then

lim
n→∞

E(Z̃pn) = µK .

Note any (BM) measure yields the same limit measure µK (this is

a type of “universality”). “Same” result in weighted case (b
(n)
j

change with n); limit µK ,Q . Conclusion: limit depends on basis.
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Further questions on random polynomials

The method above was used (and generalized) by Bloom,
Shiffman, Zelditch (and others).

We briefly address the following questions:
1 What can we say about generic convergence of the (random)

sequence of subharmonic functions { 1
n log |pn|}?

2 Can we allow more general coefficients than i.i.d. complex
Gaussian?

We write P for the space of sequences of random polynomials;
note if we consider random polynomials pn ∈ Pn as

pn(z) =
n∑

j=0

a
(n)
j bj(z), a

(n)
j i.i.d

then
P := ⊗∞n=1(Pn,Probn) = ⊗∞n=1(Cn+1,Probn).

Also (relevant for weighted case) can have b
(n)
j (z).
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General coefficients:

The following is due to Ibragimov/Zaporozhets (2013):

Theorem

For random Kac polynomials of the form pn(z) =
∑n

j=0 ajz
j with

aj i.i.d., E(log (1 + |aj |)) <∞ is a necessary and sufficient
condition for

Z̃pn = ∆(
1

n
log |pn|)→

1

2π
dθ amost surely in P.

Kabluchko/Zaporozhets (2014) considered p. s. of random analytic
functions of the form Gn(z) =

∑n
j=0 aj fn,jz

j with deterministic
coefficients {fn,j} satisfying certain hypotheses to get conv. in
prob. to a target measure. We discuss recent generalizations by

Tom BLOOM and Duncan DAUVERGNE (2018).
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Conv. in prob. vs. a.s. conv.

Let aj be i.i.d. complex random variables defined on a probability
space (Ω,F ,P). For ε > 0, n ∈ Z+, let

Ωn,ε := {ω ∈ Ω : |aj(ω)| ≤ eεn, j = 0, ..., n}.

E(log (1 + |aj |)) <∞ ⇐⇒ ∀ε,
∞∑
n=0

P(Ωc
n,ε) <∞.

P(|aj | > e |z|) = o(1/|z |)⇒ ∀ε, lim
n→∞

P(Ωc
n,ε) = 0.

When does Z̃pn → µK a.s.? In probability? This latter means for
any open set U in the space of prob. measures on C with µK ∈ U,
we have P(Z̃pn ∈ U)→ 0 as n→∞.
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Bloom-Dauvergne conv. in prob. result

Let τ be a (BM) measure on a compact set K with VK ctn.
Consider random polynomials of the form pn(z) =

∑n
j=0 ajbj(z)

where {bj}j=0,...,n form an orthonormal basis for Pn in L2(τ).

Theorem

For random polynomials of the form pn(z) =
∑n

j=0 ajbj(z), if

P(|aj | > e |z|) = o(1/|z |) then

Z̃pn = ∆(
1

n
log |pn|)→ µK in probability.

Moreover, for Kac polynomials
∑n

j=0 ajz
j , the condition

P(|aj | > e |z|) = o(1/|z |) is necessary and sufficient for

Z̃pn → µS1 = 1
2πdθ in probability.
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Bloom-Dauvergne a.s. result

Let {fn,j} be deterministic coefficients satisfying certain hypotheses
and

V (z) := lim
n→∞

1

n
log
( n∑
j=0

|fn,j ||z |j
)

loc. unif.

Theorem

For random polynomials of the form pn(z) =
∑n

j=0 aj fn,jz
j , if

E(log (1 + |aj |)) <∞ then a.s.

Z̃pn = ∆(
1

n
log |pn|)→ ∆V .

Note fn,j ≡ 1, ∀j , n give Kac poly.’s (and V (z) = log+ |z |).
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Sufficiency for Z̃pn → µK a.s., in probability

Sufficiency for Z̃pn → µK a.s.:

1 a.s. {|pn|} (or {log |pn|}) locally bounded above

2 a.s., lim supn→∞
1
n log |pn(z)| ≤ VK (z), all z

3 for each zj in a countable dense set {zj},
limn→∞

1
n log |pn(zj)| = VK (zj) a.s.

Sufficiency for Z̃pn → µK in probability:

1 For any subsequence Y ⊂ Z+ there is a further subsequence
Y0 such that, a.s., {|pn|}n∈Y0 is locally bounded above and
lim supn∈Y0

1
n log |pn(z)| ≤ VK (z), all z

2 for each zj in a countable dense set {zj},
limn→∞

1
n log |pn(zj)| = VK (zj) in probability

Condition E(log (1 + |aj |)) <∞ gives UPPER BOUND on full
sequence (for a.s.) while Condition P(|aj | > e |z|) = o(1/|z |) gives
UPPER BOUND on subsequence (for conv. in prob.)
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Lower bound on {1
n log |pn|}

Need lower bound to show limn→∞
1
n log |pn(zj)| = VK (zj) on

countable dense set a.s. or in probability. This is the hard part; we
just make a remark.

1 For conv. in prob.: Use Kolmogorov-Rogozin inequality on
concentration function of sum X1 + · · ·Xn of random
variables to get conv. in prob. of 1

n log |pn| → VK at all but a
countable set of points. Here, for X r.v.,

Q(X; r) := sup{z ∈ C : P(X ∈ B(z , r))}

is concentration fcn. of X. (Idea to use Kolmogorov-Rogozin
inequality due to Ibragimov/Zaporozhets).

2 For a.s. result: Use version of “small ball probability” result of
Nguyen-Vu for complex-valued random variables.
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Remark on modes of convergence and on to C2

Let τ be a (BM) measure on K ⊂ C with VK ctn. Consider

random polynomials of the form pn(z) =
∑n

j=0 a
(n)
j b

(n)
j (z) where

{b(n)
j (z)}j=0,...,n form o.n. basis for Pn in L2(τ). Let {a(n)

j } i.i.d.
such that (e.g., std. complex Gaussian) a.s. in P

(
lim sup
n→∞

1

n
log |pn(z)|

)∗
= VK (z)

pointwise for all z ∈ C (u∗(z) := lim supζ→z u(ζ)).Then

1 1
n log |pn| → VK in L1

loc(C) a.s. P; hence

2 Z̃pn = ∆( 1
n log |pn|)→ µK = ∆VK a.s. P (∆ linear operator).
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Onto C2

Let’s work in C2 with variables z = (z1, z2). For a polynomial

p(z) =
n∑

j+k=0

ajkz
j
1z

k
2 ∈ Pn,

the zero set Zp = {z ∈ C2 : p(z) = 0} is a one-dimensional
(complex) analytic (algebraic) variety – unbounded.
Given two polynomials p1(z) and p2(z) in Pn, consider

1 the polynomial mapping F(z) := (p1(z), p2(z)) : C2 → C2 and

2 the common zeros of p1 and p2:

ZF := {z ∈ C2 : p1(z) = p2(z) = 0}.

By Bertini/Bezout, generically ZF consists of n2 points.
Example: If p1(z) = zn1 − 1 and p2(z) = zn2 − 1, then

ZF = {(e2πij/n, e2πik/n) : j , k = 0, ..., n − 1}.

Randomness in C2 and Pluripotential Theory



We study (normalized versions of) Zp and/or ZF. Consider

1

n
log |p| and/or

1

n
log ||F||

where ||F||2 = |p1|2 + |p2|2. For u a real or complex-valued
function on a domain D in C2, we write the 1−form

du =
2∑

j=1

∂u

∂zj
dzj +

2∑
j=1

∂u

∂z j
dz j =: ∂u + ∂u

as the sum of a form ∂u of bidegree (1, 0) and a form ∂u of
bidegree (0, 1) where

∂u

∂zj
=

1

2
(
∂u

∂xj
− i

∂u

∂yj
);

∂u

∂z j
=

1

2
(
∂u

∂xj
+ i

∂u

∂yj
);

and we have

dzj = dxj + idyj ; dz j = dxj − idyj .

For a complex-valued f ∈ C 1(D), we say f is holomorphic in D if
∂f = 0 in D (⇐⇒ f is separately holomorphic in z1 and z2).
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We also define
dcu := i(∂u − ∂u).

Note that if u ∈ C 2(D), the linear operator

ddcu = 2i∂∂u = 2i
2∑

j ,k=1

∂2u

∂zj∂z̄k
dzj ∧ dzk

((1, 1)−form) so that the coefficients of the 2−form ddcu give the
entries of the 2× 2 complex Hessian matrix

H(u) := [
∂2u

∂zj∂z̄k
]2j ,k=1,

of u. Elementary linear algebra shows that the nonlinear operator

(ddcu)2 := ddcu ∧ ddcu = c2 detH(u)dV

where dV = ( 1
2i )

2dz1 ∧ dz1 ∧ dz2 ∧ dz2 is the volume form on C2

and c2 is a dimensional constant.
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Pluripotential theory in C2

A function u : D → [−∞,+∞) defined on a domain D ⊂ C2 is
plurisubharmonic (psh) in D if

1 u is uppersemicontinuous on D and

2 u|D∩l is subharmonic (shm) on components of D ∩ l for each
complex line (one-dimensional (complex) affine space) l .

For u ∈ C 2(D), u is psh in D if and only if H(u) = [ ∂2u
∂zj∂z̄k

]2j ,k=1 is

positive semi-definite; thus (ddcu)2 is a positive measure. If f is
holomorphic in D, u = log |f | is psh in D. In particular, log |p| is
psh in C2 for any polynomial p. For pn ∈ Pn,

Z̃pn := ddc(
1

n
log |pn|) (can’t take ddc(·)2!!)

is the normalized zero current of pn ((1, 1)−form with dist. coeff.).
Example: If pn(z) = zn1 , then Z̃pn is the current of integration on
the variety {z ∈ C2 : z1 = 0}. Note this is unbounded.
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For a polynomial mapping F(z) := (p1(z), p2(z)) : C2 → C2 with
p1, p2 ∈ Pn, the zero set

ZF := {z ∈ C2 : p1(z) = p2(z) = 0}

generically consists of n2 distinct points and “generically” one can
define the normalized zero current for F as

Z̃F := ddc(
1

n
log |p1|) ∧ ddc(

1

n
log |p2|)

= (ddc 1

n
log ||Fn||)2 =

(
ddc 1

2n
log[|p1|2 + |p2|2]

)2
.

Example: If p1(z) = zn1 − 1 and p2(z) = zn2 − 1, then

Z̃F =
1

n2

n−1∑
j ,k=0

δ(e2πij/n,e2πik/n).

Follows from (ddc [ 1
2 log(|z1|2 + |z2|2)])2 = δ(0,0).
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Generalization of VK

The definition of VK and BM measure are the “same” as in C,
e.g., for K ⊂ C2 nonpluripolar,

VK (z) := sup{u(z) : u ∈ L(C2), u ≤ 0 on K}

= sup{ 1

deg(p)
log |p(z)| : p ∈ ∪nPn, ||p||K ≤ 1}

where L(C2) = {u ∈ PSH(C2) : u(z)− log |z | = 0(1), |z | → ∞}.
Let τ be a BM measure on K ; let {b(n)

jk } be an orthonormal basis

for L2(τ) and consider random polynomials

p(z) =
n∑

j+k=0

a
(n)
jk b

(n)
jk (z) ∈ Pn

where a
(n)
jk are i.i.d. complex random variables. Let

mn = dimPn =
(n+2

2

)
and

P := ⊗∞n=1(Cmn ,Probmn), F := ⊗∞n=1((Cmn)2, (Probmn)2).
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Almost sure convergence

Theorem

For a
(n)
jk i.i.d. complex random variables with “tail hyp.” consider

sequences of random polynomials {pn} ∈ P and sequences of

random polynomial mappings Fn = (p
(1)
n , p

(2)
n ) ∈ F . Then a.s. we

have both (i.e., in P or in F)

lim
n→∞

1

n
log |pn| = VK ptwse. & in L1

loc(C2) and

lim
n→∞

1

n
log ||Fn|| = VK ptwse. & in L1

loc(C2) hence

lim
n→∞

ddc
(1

n
log ||Fn||

)
= lim

n→∞
ddc
(1

n
log |pn|

)
= ddcVK

as positive currents (recall ddc is a linear operator).
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General coeff.: Bloom-Dauvergne in C2

Theorem

Let K ⊂ C2 with VK continuous. For sequences of random
polynomials {pn =

∑n
j+k=0 ajkbjk(z)} where ajk i.i.d. with

P(|ajk | > e |z|) = o(1/|z |2), {bjk} o.n. for L2(τ) (τ BM),

1

n
log |pn| → VK in prob. in L1

loc(C2) and

ddc
(1

n
log |pn|

)
→ ddcVK in prob..

They also prove a result on a.s. convergence for the 2-d Kac
ensemble (here bjk(z) = z j1z

k
2 ) under the hypothesis

E(log (1 + |ajk |))2 <∞.
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dd cVK vs. µK := (dd cVK )2

For K not pluripolar, ddcVK generically has unbounded support;

µK := (ddcVK )2

is the C2−analogue of the equilibrium measure and is supported in
K . We have an asymptotic expectation result with tail hyp. on

a
(n)
jk using the “probabilistic Poincare-Lelong formula”:

E(Z̃Fn) := E(
1

n
ddc log |p(1)

n | ∧
1

n
ddc log |p(2)

n |)

= E(
1

n
ddc log |p(1)

n |) ∧ E(
1

n
ddc log |p(2)

n |);

i.e., when n→∞, Fn = (p
(1)
n , p

(2)
n ),

E(Z̃Fn) = E(Z̃
p

(1)
n

) ∧ E(Z̃
p

(2)
n

)→
(
ddcVK (z)

)2
.

The fact that Z̃Fn → (ddcVK )2 as positive measures a.s. in F is a
deeper result of T. Bayraktar (IUMJ, 2016).
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Random polynomial mappings in C2: Modification

For K ⊂ C2 compact, we know

VK (z1, z2) = sup{ 1

deg(p)
log |p(z1, z2)| : ||p||K ≤ 1}

= sup{ 1

2deg(P)
log[|p1(z1, z2)|2+|p2(z1, z2)|2] : ||pi ||K ≤ 1, i = 1, 2}

where deg(p1) = deg(p2) =: deg(P) (P := (p1, p2)).

Definition

For K1,K2 ⊂ C2 compact with VK1 ,VK2 ctn.,

UK1,K2(z1, z2) :=

sup{ 1

2deg(P)
log[|p1(z1, z2)|2 + |p2(z1, z2)|2] : ||pi ||Ki

≤ 1}.

We have UK1,K2 = max[VK1 ,VK2 ] in all of C2.
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Let {p(n)
ν }|ν|≤n be an o.n. basis of Pn in L2(µ1) where µ1 is a BM

measure on K1 and let {q(n)
ν }|ν|≤n be an o.n. basis of Pn in L2(µ2)

where µ2 is a BM measure on K2. Consider random polynomial
mappings of degree at most n of the form

Hn(z) := (H
(1)
n (z),H

(2)
n (z)) where

H
(1)
n (z) =

∑
|ν|≤n

a(n)
ν p(n)

ν (z), H
(2)
n (z) =

∑
|ν|≤n

b(n)
ν q(n)

ν (z)

and a
(n)
ν , b

(n)
ν are i.i.d. complex random variables with a

distribution satisfying mild tail probability requirements. Identify
this more general F with ⊗∞n=1((Cmn)2, (Probmn)2).
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Theorem

Almost surely in F we have(
lim sup
n→∞

1

2n
log[|H(1)

n (z)|2 + |H(2)
n (z)|2

)∗
= max[VK1(z),VK2(z)]

pointwise for all (z) ∈ C2 and a.s.

1

2n
log[|H(1)

n (z)|2 + |H(2)
n (z)|]2 → max[VK1(z),VK2(z)]

in L1
loc(C2). Hence (ddc linear operator) a.s.

ddc
( 1

2n
log[|H(1)

n (z)|2 + |H(2)
n (z)|]2

)
→ ddc

(
max[VK1(z),VK2(z)]

)
as positive currents (same result in weighted case).
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However, from Bayraktar’s results, we have a.s. in F

(ddc 1

2n
log[|H(1)

n |2 + |H(2)
n |2])2 → ddcVK1 ∧ ddcVK2 . (1)

Indeed, it is relatively straightforward to deduce

E
(
(ddc 1

2n
log[|H(1)

n |2 + |H(2)
n |2])2

)
→ ddcVK1 ∧ ddcVK2

from E(ddc 1

n
log |H(j)

n |)→ ddcVKj
, j = 1, 2

and the probabilistic Poincaré-Lelong formula. The previous
theorem “suggests” this limit might instead be

(ddc max[VK1 ,VK2 ])2.

Randomness in C2 and Pluripotential Theory



1 L1
loc(C2) convergence is not sufficient to conclude

Monge-Ampère convergence!

2 No Monge-Ampère convergence theorems for non-locally
bounded fcn’s.

These currents (here, pos. measures) are generally much different:

(ddc max[u, v ])2 = ddc max[u, v ] ∧ ddc(u + v)− ddcu ∧ ddcv .

In general, both supp(ddcu ∧ ddcv) and supp(ddc max[u, v ])2 are
unbounded – and difficult to compute.
Thus: Once K1 6= K2, positive probability some “zeros” go to
infinity!

Remark. K → K1,K2 changes o.n. basis, i.e., different for H
(1)
n

and H
(2)
n .

Hard to calculate ddcVK1 ∧ ddcVK2 .
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Example: Two balls

For u(z1, z2) := 1
2 log+(|z1|2 + |z2|2) and

v(z1, z2) := 1
2 log+(|z1 − a|2 + |z2|2) in C2, two extremal functions

for unit balls about (0, 0) and (a, 0), outside of the union of these
balls the density of ddcu ∧ ddcv is (modulo a constant)

|a|2|z2|2

(|z1|2 + |z2|2)2(|z1 − a|2 + |z2|2)2

while ddcu ∧ ddcv = 0 on the interior of the union. In particular:

1 this density is positive everywhere outside of the union of the
balls (off z2 = 0);

2 this density goes to 0 everywhere outside of the union of the
balls as a→ 0; and

3 the integral of this density outside of the union of the balls
goes to 0 as a→ 0 (because of 2. and the fact this “total
mass” is uniformly bounded (by one, say) for all a).
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Another modification: P−extremal functions

Given a convex body P ⊂ (R+)2, for n = 1, 2, ... define

Poly(nP) := {
∑

J∈nP∩(Z+)2

cJz
J =

∑
(j1,j2)∈nP∩(Z+)2

cj1j2z
j1
1 z j22 : cJ ∈ C}.

Example: Pq := {(x1, x2) ∈ (R+)2 : (xq1 + xq2 )1/q ≤ 1}.
For K ⊂ C2 compact, define the P−extremal function

VP,K (z) = sup{u(z) : u ∈ LP(C2), u ≤ 0 on K}

= lim
n→∞

[sup{1

n
log |pn(z)| : pn ∈ Poly(nP), ||pn||K ≤ 1}]

where LP(C2) = {u ∈ PSH(C) : u(z)− HP(z) = 0(1), |z | → ∞},

HP(z) := sup
J∈P

log |zJ | := sup
J∈P

log[|z1|j1 |z2|j2 ]

(logarithmic indicator function). For K = T , the unit torus,

VP,T (z) = HP(z) = max
J∈P

log |zJ |.
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Random Poly(nP) polynomials in C2

Let µ be a BM measure for K ⊂ C2, {pα} an o.n. basis for
Poly(nP) in L2(µ). Consider random Poly(nP) polynomials

Pn(z) =
∑

α∈nP a
(n)
α pα(z) (where a

(n)
α are i.i.d. complex-valued

random variables) and random polynomial mappings
Fn(z) = (Pn(z),Qn(z)). We get a probability measure Probn on
Fn, the random polynomial mappings with Pn,Qn ∈ Poly(nP).
Identify Fn with Cdn × Cdn where dn = dimPoly(nP). Given
Fn ∈ Fn, let

Z̃Fn := (ddc 1

n
log ||Fn||)2 = (ddc [

1

2n
log(|Pn|2 + |Qn|2)])2.

For generic Fn, Z̃Fn is, up to a constant, the normalized zero
measure on the (finite) zero set {Pn = Qn = 0}.
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Bayraktar (MMJ, 2017), to explain S-Z 2004, proved that

lim
n→∞

E(Z̃Fn) = (ddcVP,K )2.

as measures. Forming the product probability space of sequences
of random polynomial mappings

P := ⊗∞n=1(Fn,Probn) = ⊗∞n=1(Cdn × Cdn ,Probn),

almost surely (a.s.) in P (mild tail hyp.) we have

1

n
log ||Fn|| =

1

2n
log(|Pn|2 + |Qn|2)→ VP,K (z)

pointwise in C2 and in L1
loc(C2). Moreover, a.s. in P we have

(ddc 1

n
log ||Fn||)2 = (ddc [

1

2n
log(|Pn|2 + |Qn|2)])2 → (ddcVP,K )2.

as measures. Call µP,K := (ddcVP,K )2.
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Example: The torus T and Pq

Let T = S1 × S1 = {(z1, z2) : |z1| = |z2| = 1}. We know that

VP,T (z1, z2) = HP(log+ |z1|, log+ |z2|).

Let Pq be the portion of the lq−ball in (R+)2 (so Poly(nPq)
spaces vary with q). For any 1 ≤ q ≤ ∞, we have

VPq ,T (z1, z2) = [(log+ |z1|)q
′

+ (log+ |z2|)q
′
]1/q

′
,

1/q + 1/q′ = 1. By invariance under (z1, z2)→ (e iθ1z1, e
iθ2z2),

µPq ,T is a multiple of Haar measure on T : µPq ,T (T ) = 2Vol(Pq).

Corollary

With K = T, for P = Pq, E(Z̃Fn)→ µPq ,T with analogous
statements for the a.s. results (normalized monomial basis).

Thus only total mass of target measure changes.
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Example: B2 := {(z1, z2) : |z1|2 + |z2|2 ≤ 1} and Pq

Here, VP1,B2 = VB2 = 1
2 log+(|z1|2 + |z2|2) and µP1,B2 is

normalized surface area measure on ∂B2. On the other hand:

Theorem

For VP∞,B2 , we have µP∞,B2 is a multiple of Haar measure on the
torus {|z1| = |z2| = 1/

√
2}.

Corollary

With K = B2, for

1 P = P1 = Σ, E(Z̃Fn)→ µP1,B2 , normalized surface area
measure on ∂B2; while for

2 P = P∞, E(Z̃Fn)→ µP∞,B2 , a multiple of Haar measure on
the torus {|z1| = |z2| = 1/

√
2}

with analogous statements for the a.s. results.
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Question: As q varies from q = 1 to q =∞, µPq ,B2 varies from
normalized surface area measure on ∂B2 (3-d support) to a
multiple of Haar measure on the torus {|z1| = |z2| = 1/

√
2} (2-d

support). Thus there must be a “discontinuity” of

Sq := supp(µPq ,B2)

for some q. Does this happen at q =∞ or does Sq shrink
gradually from q = 1 to q =∞?
Remark. K ,P → K ,P ′ modifies Poly(nP)→ Poly(nP ′); e.g.,
Poly(nPq) spaces vary with q. Here supp(µP,K ), supp(µP′,K ) stay
in K . Similar for weighted extremal fcn. if modify weight.
Problem 1: Compute more examples of ddcVK1 ∧ ddcVK2 .
Problem 2: Compute more examples of µP,K := (ddcVP,K )2.
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